Class Copy

- 1. Use the Information Booklet to write the first four non-zero terms of the Maclaurin series for
- a. $\ln x^2$ [Hint: substitute $u = x^2 1$ and then develop the series for $\ln(u+1)$.] b. $f(x) = x \sin 4x$

2a. By finding a sufficient number of derivatives, write the first three terms of the Maclaurin series for $\ln(1+e^x)$.

b. Hence or otherwise, determine the value of $\lim_{x\to 0} \frac{2\ln(1+e^x) - x - \ln 4}{x^2}$

3a. Rewrite $\ln\left(\frac{1+x}{1-x}\right)$ without fractions.

b. Hence, find $P_7(x)$, the Maclaurin Polynomial of degree 7 for $f(x) = \ln\left(\frac{1+x}{1-x}\right)$.

c. Find the remainder when $P_7(x)$ is used to estimate $\ln 3$

4. Let $P_4(x) = 7 - 3(x-4) + 5(x-4)^2 - 2(x-4)^3 + 6(x-4)^4$ be the Taylor Polynomial of order 4 for the function f at x = 4. Assume f has derivatives of all orders for all real numbers. a. Find f(4) and f'''(4).

b. Write the second order Taylor polynomial for f' at x = 4 and use it to approximate f'(4.3).

c. Write the fourth order Taylor polynomial for $g(x) = \int_{4}^{x} f(t) dt$ at x = 4.

5. Write the indicated series in sigma notation.

- a. The Maclaurin series for $\frac{1}{1-6x}$. b. The Taylor series for $\frac{1}{1-6x}$ centered at x = 2. c. The Maclaurin series for $\cos 3x$. d. The Maclaurin series for $\arctan \frac{x}{2}$
- 6. Find the radius of convergence and interval of convergence for each power series.

a.
$$\sum_{n=0}^{\infty} \left(\frac{2}{3}\right)^n (x-1)^n$$
 b. $\sum_{n=0}^{\infty} (n+1)x^{3n}$ c. $\sum_{n=0}^{\infty} \frac{e^n}{n^e} x^n$ d. $\sum_{n=0}^{\infty} \frac{n!}{2^n} x^{2n}$ e. $\sum_{n=0}^{\infty} \frac{(10x)^n}{\ln n}$ f. $\sum_{n=0}^{\infty} \left(\frac{x^2-1}{2}\right)^n$

5. Ch 9 Review p. 692 (81, 83, 88, 89)