1a. By using the Information Booklet, write $P_5(x)$, the 5th degree Maclaurin polynomial for $h(x) = \sin 2x$.

b. Hence, use $P_{\rm S}(x)$ to estimate $\sin\frac{\pi}{7}$. Round your answer to four decimal places.

2a. Write the 3rd degree Taylor polynomial, $P_3(x)$ for $f(x) = x^{3/2}$ centered at c = 9.

b. What is the remainder when $P_{\!\scriptscriptstyle 3}\!\left(x
ight)$ is used to estimate $10^{\scriptscriptstyle 3/2}$?

3. Let f be a function that has derivatives of all orders for all real numbers. Assume that f(3)=1, f'(3)=4, f''(3)=6, and f'''(3)=12.

a. Write the third order Taylor polynomial for f at x = 3. b. Hence, approximate f(3.2)

c. Write the second order Taylor polynomial for f' at x = 3. d. Hence, approximate f'(2.7).

The series is the value of the Maclaurin series of a function f(x) at a particular point.

a. What is the function and at what point?

b. What is the sum of the series?

$$4. \ 1 - \frac{1}{4} + \frac{1}{16} - \dots + \left(-1\right)^{n} \frac{1}{4^{n}} + \dots \qquad 5. \ \frac{2}{3} - \frac{4}{18} + \frac{8}{81} - \dots + \left(-1\right)^{n-1} \frac{2^{n}}{n3^{n}} + \dots \qquad 6. \ \pi - \frac{\pi^{3}}{3!} + \frac{\pi^{5}}{5!} - \dots + \left(-1\right)^{n} \frac{\pi^{2n+1}}{(2n+1)!} + \dots$$