1a. By using the Information Booklet, write $P_{5}(x)$, the $5^{\text {th }}$ degree Maclaurin polynomial for $h(x)=\sin 2 x$.
b. Hence, use $P_{5}(x)$ to estimate $\sin \frac{\pi}{7}$. Round your answer to four decimal places.

2a. Write the $3^{\text {rd }}$ degree Taylor polynomial, $P_{3}(x)$ for $f(x)=x^{3 / 2}$ centered at $c=9$.
b. What is the remainder when $P_{3}(x)$ is used to estimate $10^{3 / 2}$?
3. Let f be a function that has derivatives of all orders for all real numbers. Assume that $f(3)=1, f^{\prime}(3)=4$, $f^{\prime \prime}(3)=6$, and $f^{\prime \prime \prime}(3)=12$.
a. Write the third order Taylor polynomial for f at $x=3$.
b. Hence, approximate $f(3.2)$
c. Write the second order Taylor polynomial for f^{\prime} at $x=3$.
d. Hence, approximate $f^{\prime}(2.7)$.

The series is the value of the Maclaurin series of a function $f(x)$ at a particular point.
a. What is the function and at what point?
b. What is the sum of the series?
4. $1-\frac{1}{4}+\frac{1}{16}-\ldots+(-1)^{n} \frac{1}{4^{n}}+\ldots$
5. $\frac{2}{3}-\frac{4}{18}+\frac{8}{81}-\ldots+(-1)^{n-1} \frac{2^{n}}{n 3^{n}}+\ldots$
6. $\pi-\frac{\pi^{3}}{3!}+\frac{\pi^{5}}{5!}-\ldots+(-1)^{n} \frac{\pi^{2 n+1}}{(2 n+1)!}+\ldots$

