1. Given $f(x)=\left\{\begin{array}{cl}\sin (x-1)+c x & x \leq 1 \\ x^{2}-x+d & x>1\end{array}\right.$, find constants $c, d \in R$. So that the function is differentiable at $x=1$.
2. Given $f(x)=\left\{\begin{array}{cc}-2 x-5 & x \leq-1 \\ x^{2}-4 & x>-1\end{array}\right.$, use Rolle's theorem to show that $\frac{d f}{d x}=0$ exists on the interval $[-2.5,2]$.
3. Find $\frac{d f}{d x}$ where $f(x)=\int_{6}^{\sin x} \frac{1}{\ln t} d t$. Show your work with proper notations.
4. Given $f(x)=x+\frac{1}{x}$, find all values of c on the given interval $[1,3]$ such that $f(b)-f(a)=f^{\prime}(c) \times(b-a)$.
5. Revisit the Formal Calculus quiz.
6. Revisit the Formal Calculus homework.
7. The function f is defined by $f(x)=e^{x} \sin x$.
a. Show that $f^{\prime \prime}(x)=2 e^{x} \sin \left(x+\frac{\pi}{2}\right)$.
b. Obtain a similar expression for $f^{(4)}(x)$.
c. Suggest an expression for $f^{(2 n)}(x), n \in \mathbb{Z}^{+}$, and prove your conjecture using mathematical induction.
8. (13G\#3) From $\sin 2 x=2 \sin x \cos x$ we observe that $\sin x \cos x=\frac{\sin 2 x}{2}=\frac{\sin \left(2^{1} x\right)}{2^{1}}$.
a. Prove that i. $\sin x \cos x \cos 2 x=\frac{\sin \left(2^{2} x\right)}{2^{2}} \quad$ ii. $\sin x \cos x \cos 2 x \cos 4 x=\frac{\sin \left(2^{3} x\right)}{2^{3}}$
b. Assuming the pattern in part a continues, simplify
i. $\sin x \cos x \cos 2 x \cos 4 x \cos 8 x$
ii. $\sin x \cos x \cos 2 x \ldots \cos 32 x$
c. i. Generalize the results form parts a and b .
ii. Prove your generalization using mathematical induction.
9. Using Mathematical induction, prove $\frac{d^{n} y}{d x^{n}}=(-1)^{n-1} \cdot \frac{2(n-3)!}{(1+x)^{n-2}}$ for $n \in \mathbb{Z}, n>2$ if $y=(1+x)^{2} \ln (1+x)$
10. Given $f(x)=\left\{\begin{array}{cl}\sin (x-1)+c x & x \leq 1 \\ x^{2}-x+d & x>1\end{array}\right.$, find constants $c, d \in R$. So that the function is differentiable at $x=1$.
11. Given $f(x)=\left\{\begin{array}{cc}-2 x-5 & x \leq-1 \\ x^{2}-4 & x>-1\end{array}\right.$, use Rolle's theorem to show that $\frac{d f}{d x}=0$ exists on the interval $[-2.5,2]$.
12. Find $\frac{d f}{d x}$ where $f(x)=\int_{6}^{\sin x} \frac{1}{\ln t} d t$. Show your work with proper notations.

$$
f(x)=x+\frac{1}{x}
$$

$$
x \text {, find all values of } \mathrm{c} \text { on the given interval }[1,3] \text { such that } f(b)-f(a)=f^{\prime}(c) \times(b-a) \text {. }
$$

7. The function f is defined by $f(x)=e^{x} \sin x$.
a. Show that $f^{\prime \prime}(x)=2 e^{x} \sin \left(x+\frac{\pi}{2}\right)$.
b. Obtain a similar expression for $f^{(4)}(x)$.
c. Suggest an expression for $f^{(2 n)}(x), n \in \mathbb{Z}^{+}$, and prove your conjecture using mathematical induction.
$P\left(\_\right):$ $P(\ldots)$ is true.

Assume $P(n)$ is true. Then
$P(n+1)$ :

So $P(n+1)$ is true. $\quad P(\ldots)$ is true. If $P(n)$ is true then $P(n+1)$ is true. Hence $P(n)$ is true for all $n$
8. (13G\#3) From $\sin 2 x=2 \sin x \cos x$ we observe that $\sin x \cos x=\frac{\sin 2 x}{2 \sin x}=\frac{\sin \left(2^{1} x\right)}{2^{1} \sin x}$.
a. Prove that i. $\sin x \cos x \cos 2 x=\frac{\sin \left(2^{2} x\right)}{2^{2} \sin x} \quad$ ii. $\sin x \cos x \cos 2 x \cos 4 x=\frac{\sin \left(2^{3} x\right)}{2^{3} \sin x}$
b. Assuming the pattern in part a continues, simplify
i. $\sin x \cos x \cos 2 x \cos 4 x \cos 8 x$
ii. $\sin x \cos x \cos 2 x \ldots \cos 32 x$
c. i. Generalize the results form parts $a$ and $b$.
ii. Prove your generalization using mathematical induction.
$P\left(\_\right):$ $P(\ldots)$ is true.

Assume $P(n)$ is true. Then
$P(n+1)$ :

So $P(n+1)$ is true. $\quad P\left(\_\right)$is true. If $P(n)$ is true then $P(n+1)$ is true. Hence $P(n)$ is true for all $n$ $\qquad$ .
9. Using Mathematical induction, prove $\frac{d^{n} y}{d x^{n}}=(-1)^{n-1} \cdot \frac{2(n-3)!}{(1+x)^{n-2}}$ for $n \in \mathbb{Z}, n>2$ if $y=(1+x)^{2} \ln (1+x)$ $P\left(\_\right)$: $P(\ldots)$ is true.

Assume $P(n)$ is true. Then

$$
P(n+1):
$$

So $P(n+1)$ is true.
$P(\ldots)$ is true. If $P(n)$ is true then $P(n+1)$ is true. Hence $P(n)$ is true for all $n$ $\qquad$ .

