IB Math HL2: Chapter 16 IB Questions

- 1. (a) Solve the equation $z^3 = -2 + 2i$, giving your answers in modulus-argument form.
 - (b) **Hence** show that one of the solutions is 1+i when written in Cartesian form.
- 2. Given that z is the complex number x + iy and that |z| + z = 6 2i, find the value of x and the value of y.
- Given that $\frac{z}{z+2} = 2 i$, $z \in \mathbb{C}$, find z in the form a + ib.
- 4. If $z_1 = a + a\sqrt{3}i$ and $z_2 = 1 i$, where a is a real constant, express z_1 and z_2 in the form $r \operatorname{cis} \theta$, and hence find an expression for $\left(\frac{z_1}{z_2}\right)^6$ in terms of a and a.
- 5. (a) If w = 2 + 2i, find the modulus and argument of w.
 - (b) Given $z = \cos\left(\frac{5\pi}{6}\right) + i\sin\left(\frac{5\pi}{6}\right)$, find in its simplest form w^4z^6 .
- Consider the complex numbers u = 2+3i and v = 3+2i.
 - (a) Given that $\frac{1}{u} + \frac{1}{v} = \frac{10}{w}$, express w in the form a + bi, $a, b \in \mathbb{R}$.
 - (b) Find w^* and express it in the form $re^{i\theta}$.
- 7. (a) (i) Use the binomial theorem to expand $(\cos \theta + i \sin \theta)^5$.
 - (ii) Hence use De Moivre's theorem to prove

$$\sin 5\theta = 5\cos^4\theta \sin\theta - 10\cos^2\theta \sin^3\theta + \sin^5\theta.$$

(iii) State a similar expression for $\cos 5\theta$ in terms of $\cos \theta$ and $\sin \theta$.

Let $z = r(\cos \alpha + i\sin \alpha)$, where α is measured in degrees, be the solution of $z^5 - 1 = 0$ which has the smallest positive argument.

- (b) Find the value of r and the value of α .
- (c) Using (a) (ii) and your answer from (b) show that $16\sin^4 \alpha 20\sin^2 \alpha + 5 = 0$.
- (d) Hence express $\sin 72^\circ$ in the form $\frac{\sqrt{a+b\sqrt{c}}}{d}$ where a, b, c, $d \in \mathbb{Z}$.